If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+11n-10=0
a = 8; b = 11; c = -10;
Δ = b2-4ac
Δ = 112-4·8·(-10)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-21}{2*8}=\frac{-32}{16} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+21}{2*8}=\frac{10}{16} =5/8 $
| y3=-7 | | (4x-16)+8x=12 | | -7-8=7y | | -2(-1y+3)-1=y | | 6x+81=6x+64 | | -7-8x=0 | | 2x-0.1=1 | | 0.8x+12=x−12 | | -7-8x=7 | | 2x+4=5+(2x) | | 6-2c+6=12 | | -3x+11=-2x+1 | | 4^x+2^(1+2x)=50 | | 6x+64=6x+81 | | 145+12x=180 | | 24+4y+2y=6 | | 16x+1/2=3/4 | | x=-5x(x²-9)(x-7) | | 8+6y=2 | | 43/8=k-71/8 | | 35x=40 | | -4.8x=9.8 | | 5/6x-5=31+1/3x | | 42x²-13x-40=0 | | 5(×-6)-2=2x-5 | | 15=7+3k-18 | | X2-10x-9=0 | | 6^3x+2=4^2x-1 | | 2(-1-y)+3y=1 | | 2x+6.60=19 | | 7(9+3y)+5y=1 | | 2x^2+12-80=0 |